首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Understanding Plagiarism Linguistic Patterns, Textual Features, and Detection Methods
【24h】

Understanding Plagiarism Linguistic Patterns, Textual Features, and Detection Methods

机译:了解Pla窃的语言模式,文字特征和检测方法

获取原文
获取原文并翻译 | 示例

摘要

Plagiarism can be of many different natures, ranging from copying texts to adopting ideas, without giving credit to its originator. This paper presents a new taxonomy of plagiarism that highlights differences between literal plagiarism and intelligent plagiarism, from the plagiarist''s behavioral point of view. The taxonomy supports deep understanding of different linguistic patterns in committing plagiarism, for example, changing texts into semantically equivalent but with different words and organization, shortening texts with concept generalization and specification, and adopting ideas and important contributions of others. Different textual features that characterize different plagiarism types are discussed. Systematic frameworks and methods of monolingual, extrinsic, intrinsic, and cross-lingual plagiarism detection are surveyed and correlated with plagiarism types, which are listed in the taxonomy. We conduct extensive study of state-of-the-art techniques for plagiarism detection, including character n-gram-based (CNG), vector-based (VEC), syntax-based (SYN), semantic-based (SEM), fuzzy-based (FUZZY), structural-based (STRUC), stylometric-based (STYLE), and cross-lingual techniques (CROSS). Our study corroborates that existing systems for plagiarism detection focus on copying text but fail to detect intelligent plagiarism when ideas are presented in different words.
机译:抄袭可能具有许多不同的性质,从抄袭文本到采纳思想,而无视其创始者。本文提出了一种of窃的新分类法,从the窃者的行为角度出发,该分类法突显了literal窃与智力intelligent窃之间的区别。该分类法支持对窃行为的不同语言模式的深入理解,例如,将文本更改为语义等效但具有不同词和组织的文本,以概念概括性和规范性缩短文本,并采用其他思想和重要贡献。讨论了表征不同窃类型的不同文字特征。对单语,外在,内在和跨语言-窃检测的系统框架和方法进行了调查,并将其与分类中列出的窃类型相关联。我们对study窃检测技术进行了广泛的研究,包括基于字符n-gram(CNG),基于矢量(VEC),基于语法(SYN),基于语义(SEM),模糊的基于(FUZZY),基于结构(STRUC),基于测图(STYLE)和跨语言技术(CROSS)。我们的研究证实了现有的抄袭检测系统专注于复制文本,但是当以不同的词来表达想法时,则无法检测到智能抄袭。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号