首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Joint-Structured-Sparsity-Based Classification for Multiple-Measurement Transient Acoustic Signals
【24h】

Joint-Structured-Sparsity-Based Classification for Multiple-Measurement Transient Acoustic Signals

机译:基于联合结构稀疏性的多测量瞬态声信号分​​类

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the joint-structured-sparsity-based methods for transient acoustic signal classification with multiple measurements. By joint structured sparsity, we not only use the sparsity prior for each measurement but we also exploit the structural information across the sparse representation vectors of multiple measurements. Several different sparse prior models are investigated in this paper to exploit the correlations among the multiple measurements with the notion of the joint structured sparsity for improving the classification accuracy. Specifically, we propose models with the joint structured sparsity under different assumptions: same sparse code model, common sparse pattern model, and a newly proposed joint dynamic sparse model. For the joint dynamic sparse model, we also develop an efficient greedy algorithm to solve it. Extensive experiments are carried out on real acoustic data sets, and the results are compared with the conventional discriminative classifiers in order to verify the effectiveness of the proposed method.
机译:本文研究了基于联合结构稀疏性的瞬态声信号分​​类方法。通过联合结构化稀疏性,我们不仅在每次测量之前都使用稀疏性,而且还利用跨多个测量值的稀疏表示向量的结构信息。本文研究了几种不同的稀疏先验模型,以利用联合结构稀疏性概念来利用多次测量之间的相关性,以提高分类精度。具体来说,我们提出了在不同假设下具有联合结构稀疏性的模型:相同的稀疏代码模型,通用的稀疏模式模型以及新提出的联合动态稀疏模型。对于联合动态稀疏模型,我们还开发了一种有效的贪婪算法来求解。在真实的声学数据集上进行了广泛的实验,并将结果与​​传统的判别式分类器进行了比较,以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号