首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Prediction of User's Web-Browsing Behavior: Application of Markov Model
【24h】

Prediction of User's Web-Browsing Behavior: Application of Markov Model

机译:用户网络浏览行为的预测:Markov模型的应用

获取原文
获取原文并翻译 | 示例

摘要

Web prediction is a classification problem in which we attempt to predict the next set of Web pages that a user may visit based on the knowledge of the previously visited pages. Predicting user's behavior while serving the Internet can be applied effectively in various critical applications. Such application has traditional tradeoffs between modeling complexity and prediction accuracy. In this paper, we analyze and study Markov model and all- $K$th Markov model in Web prediction. We propose a new modified Markov model to alleviate the issue of scalability in the number of paths. In addition, we present a new two-tier prediction framework that creates an example classifier EC, based on the training examples and the generated classifiers. We show that such framework can improve the prediction time without compromising prediction accuracy. We have used standard benchmark data sets to analyze, compare, and demonstrate the effectiveness of our techniques using variations of Markov models and association rule mining. Our experiments show the effectiveness of our modified Markov model in reducing the number of paths without compromising accuracy. Additionally, the results support our analysis conclusions that accuracy improves with higher orders of all- $K$th model.
机译:Web预测是一个分类问题,其中我们尝试根据先前访问的页面的知识来预测用户可能访问的下一组Web页面。预测用户在服务互联网时的行为可以有效地应用于各种关键应用程序中。这种应用在建模复杂性和预测精度之间具有传统的权衡。在本文中,我们分析和研究了Web预测中的Markov模型和全$ K $ Markov模型。我们提出了一种新的改进的马尔可夫模型,以减轻路径数量中的可伸缩性问题。另外,我们提出了一个新的两层预测框架,该框架基于训练示例和生成的分类器创建了示例分类器EC。我们证明了这样的框架可以在不影响预测准确性的情况下改善预测时间。我们使用标准基准数据集来分析,比较和证明我们的技术的有效性,这些技术使用了马尔可夫模型的变体和关联规则挖掘。我们的实验表明,改进的Markov模型在减少路径数量而不影响精度的情况下是有效的。此外,这些结果支持了我们的分析结论,即更高的全$ k $模型阶数会提高准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号