首页> 外文期刊>Concurrency and computation: practice and experience >Interest prediction in social networks based on Markov chain modeling on clustered users
【24h】

Interest prediction in social networks based on Markov chain modeling on clustered users

机译:基于聚类用户马尔可夫链模型的社交网络兴趣预测

获取原文
获取原文并翻译 | 示例

摘要

Effective user interest prediction is significant for service providers in a set of application scenarios such as user behavior analysis and resource recommendation. However, existing approaches are either incomplete or proprietary. In this paper, user interest prediction based on the Markov chain modeling on clustered users is proposed with the following procedure: collect dataset from 4613 users and more than 16 million messages from Sina Weibo; obtain each user's interest eigenvalue sequence and establish single-Markov chain model; and implement user clustering algorithm for the multi-Markov chain construction in order to divide users into a set of predefined interest categories. The proposed solution is capable of predicting both long-term and short-term user interests based on a suitable selection of the initial state distribution, λ. The proposed solution also proves that short-term interests are consistent with long-term interests if the influences of social or user-related events that cause interruptions (e.g., earthquake and birthday) are not considered. Furthermore, experiments show that the proposed solution is feasible and efficient and can achieve a higher accuracy of prediction than that of the other approaches such as Support Vector Machine (SVM) and K-means. Copyright © 2015 John Wiley & Sons, Ltd.
机译:有效的用户兴趣预测对于服务提供商在一系列应用程序场景(例如用户行为分析和资源推荐)中至关重要。但是,现有方法要么不完整,要么专有。本文提出了一种基于马尔可夫链模型的聚类用户兴趣预测方法,该过程包括:收集4613个用户的数据集和新浪微博的1600万条消息。获取每个用户的兴趣特征值序列,建立单马尔可夫链模型;并为多马尔可夫链构建实现用户聚类算法,以将用户划分为一组预定义的兴趣类别。所提出的解决方案能够基于对初始状态分布λ的适当选择来预测长期和短期用户兴趣。如果不考虑引起中断的社会或用户相关事件(例如地震和生日)的影响,则所提出的解决方案还证明了短期利益与长期利益是一致的。此外,实验表明,与支持向量机(SVM)和K-means等其他方法相比,所提出的解决方案是可行和高效的,并且可以实现更高的预测精度。版权所有©2015 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Fuzhou University College of Mathematics and Computer Science Fuzhou China;

    Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou China;

    Fuzhou University College of Mathematics and Computer Science Fuzhou China;

    Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou China;

    Fuzhou University College of Mathematics and Computer Science Fuzhou China;

    Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou China;

    Fuzhou University College of Mathematics and Computer Science Fuzhou China;

    Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    social network; single‐Markov chain; multi‐Markov chain; interest eigenvalues; clustering;

    机译:社交网络;单马尔可夫链;多马尔可夫链;兴趣特征值;聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号