首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Geometric modeling and recognition of elongated regions in aerial images
【24h】

Geometric modeling and recognition of elongated regions in aerial images

机译:航拍图像中细长区域的几何建模和识别

获取原文
获取原文并翻译 | 示例

摘要

The authors present a curve-fitting method for the recovery of elongated regions in aerial images by analyzing the local image features that constitute these regions. Elongation is defined in terms of an axial model that describes a broad class of objects found in aerial scenes. The authors fit the model using a perceptual strip clustering that maintains constraints on feature connectivity and curvilinear alignment. Connectivity is obtained from internal representations of closest-point properties, specifically, a thresholded version of the Gabriel graph. This is shown to offer the advantages of both the minimum spanning tree and the Delauney triangulation, while being easily computable from finite neighborhood operations. An iterative curve fitting is used for the clustering of maximally elongated partitions, incorporating the perceptual constraints. This has the ability to interpolate across missing elements with a smooth curve, while ignoring nearby complicating structures and systematic gross noise. The general parametric strip model is described, with specific algorithms and examples given for lines and circles. A complete analysis of linear shape in low-level region segmentations is presented, with results for a suburban road network.
机译:通过分析构成这些区域的局部图像特征,作者提出了一种曲线拟合方法,用于恢复航空图像中的细长区域。伸长率是根据轴向模型定义的,该模型描述了在空中场景中发现的各种物体。作者使用感知带状聚类对模型进行拟合,该聚类在要素连通性和曲线对齐方面保持约束。连接性是从最近点属性的内部表示形式获得的,特别是Gabriel图的阈值形式。这显示出既具有最小生成树又具有Delauney三角剖分的优点,同时易于从有限邻域运算中计算得出。迭代曲线拟合用于最大伸长的分区的聚类,并结合了感知约束。这样就可以用平滑的曲线对缺失的元素进行插值,而忽略附近的复杂结构和系统性总噪声。描述了一般的参数带状模型,并给出了针对直线和圆的特定算法和示例。提出了对低层区域分割中线性形状的完整分析,并给出了郊区道路网络的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号