首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Computational-complexity reduction for neural network algorithms
【24h】

Computational-complexity reduction for neural network algorithms

机译:神经网络算法的计算复杂度降低

获取原文
获取原文并翻译 | 示例

摘要

An important class of neural models is described as a set of coupled nonlinear differential equations with state variables corresponding to the axon hillock potential of neurons. Through a nonlinear transformation, these models can be converted to an equivalent system of differential equations whose state variables correspond to firing rates. The firing rate formulation has certain computational advantages over the potential formulation of the model. The computational and storage burdens per cycle in simulations are reduced, and the resulting equations become quasilinear in a large significant subset of the state space. Moreover, the dynamic range of the state space is bounded, alleviating the numerical stability problems in network simulation. These advantages are demonstrated through an example, using the authors' model for the so-called neural solution to the traveling salesman problem proposed by J.J. Hopfield and D.W. Tank (1985).
机译:一类重要的神经模型被描述为一组耦合的非线性微分方程,其状态变量对应于神经元的轴突岗势。通过非线性转换,这些模型可以转换为等效方程组,其状态变量对应于点火速率。点火速率公式比模型的潜在公式具有某些计算优势。减少了仿真中每个周期的计算和存储负担,并且在状态空间的很大一部分中,所得方程变为准线性。而且,状态空间的动态范围是有界的,缓解了网络仿真中的数值稳定性问题。通过使用作者的模型对J.J.霍普菲尔德(Hopfield)和D.W.坦克(1985)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号