首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Genetic-based new fuzzy reasoning models with application to fuzzy control
【24h】

Genetic-based new fuzzy reasoning models with application to fuzzy control

机译:基于遗传的新型模糊推理模型及其在模糊控制中的应用

获取原文
获取原文并翻译 | 示例

摘要

The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown in this paper that the performance of fuzzy control systems may be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate an optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.
机译:模糊推理模型在模糊控制系统中的成功应用取决于许多参数,例如模糊隶属函数,这些参数通常是主观决定的。本文表明,如果通过基于遗传的学习机制来补充模糊推理模型,则可以提高模糊控制系统的性能。遗传算法使我们能够基于模糊推理模型的初始主观选择或随机选择来为其生成最佳参数集。结果表明,如果领域的知识是可用的,则遗传算法会利用该知识,从而使模糊控制器具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号