首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A Biometric Key Generation Method Based on Semisupervised Data Clustering
【24h】

A Biometric Key Generation Method Based on Semisupervised Data Clustering

机译:基于半监督数据聚类的生物特征密钥生成方法

获取原文
获取原文并翻译 | 示例

摘要

Storing biometric templates and/or encryption keys, as adopted in traditional biometrics-based authentication methods, has raised a matter of serious concern. To address such a concern, biometric key generation, which derives encryption keys directly from statistical features of biometric data, has emerged to be a promising approach. Existing methods of this approach, however, are generally unable to appropriately model user variations, making them difficult to produce consistent and discriminative keys of high entropy for authentication purposes. This paper develops a semisupervised clustering scheme, which is optimized through a niching memetic algorithm, to effectively and simultaneously model both intra- and interuser variations. The developed scheme is employed to model the user variations on both single features and feature subsets with the purpose of recovering a large number of consistent and discriminative feature elements for key generation. Moreover, the scheme is designed to output a large number of clusters, thus further assisting in producing long while consistent and discriminative keys. Based on this scheme, a biometric key generation method is finally proposed. The performance of the proposed method has been evaluated on the biometric modality of handwritten signatures and compared with existing methods. The results show that our method can deliver consistent and discriminative keys of high entropy, outperforming-related methods.
机译:传统的基于生物特征的身份验证方法中采用的存储生物特征模板和/或加密密钥引起了人们的严重关注。为了解决这一问题,直接从生物特征数据的统计特征中获取加密密钥的生物特征密钥生成已成为一种有前途的方法。然而,这种方法的现有方法通常不能适当地对用户变化进行建模,从而使它们难以产生用于认证目的的高熵的一致和可区分的密钥。本文开发了一种半监督聚类方案,该方案通过适当的模因算法进行了优化,可以有效地同时建模用户内部和用户之间的差异。所开发的方案用于对单个特征和特征子集上的用户变化进行建模,以恢复大量一致和可区分的特征元素以生成密钥。此外,该方案被设计为输出大量簇,从而进一步帮助产生长时间而一致且具有区分性的密钥。基于该方案,最后提出了一种生物特征密钥生成方法。已对手写签名的生物特征进行了评估,并与现有方法进行了比较。结果表明,我们的方法可以提供高熵,性能优于相关方法的一致和可区分的键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号