首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Fault Propagation Reasoning and Diagnosis for Computer Networks Using Cyclic Temporal Constraint Network Model
【24h】

Fault Propagation Reasoning and Diagnosis for Computer Networks Using Cyclic Temporal Constraint Network Model

机译:基于循环时间约束网络模型的计算机网络故障传播推理与诊断

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis, including fault detection and isolation, is a critical task for computer networks. Among the various techniques used for online system-level diagnosis, we are interested in the approach based on temporal information processing. The delays of the computer networks are inevitable, and the fault localization process has to take into account bounded delays or the temporal constraints. Temporal information is fundamental in model-based diagnosis. There can be cycles or loops in a computer network, but the fault reasoning methods for such cases are seldom considered in the literature. This paper provides an analytic model based on the cyclic temporal constraint network (CTCN), which aims at the fault diagnosis of cyclic computer networks using temporal information. The goal of the proposed framework is twofold: given the network structures and the predetermined candidate fault causes, the CTCN model corresponding the computer network under test is formulated; based on the CTCN model, given the alarms sequences with timestamps, the fault diagnosis process is executed to determine the most likely fault cause(s) with its/their time interval(s) of occurrence(s). The reasoning method is dependent on time point and time distance information, with which the fault motivators (i.e., actors) and fault responders (i.e., victims) can be identified. The calculation process consists of three steps: 1) establishment of the objective function; 2) determination of the fault propagation paths; and 3) determination of the expected states with a given fault hypothesis. Finally, the proposed method is demonstrated via an application study, and the effectiveness of our proposed method is verified.
机译:故障诊断,包括故障检测和隔离,是计算机网络的一项关键任务。在用于在线系统级诊断的各种技术中,我们对基于时间信息处理的方法感兴趣。计算机网络的延迟是不可避免的,故障定位过程必须考虑有限的延迟或时间限制。时间信息对于基于模型的诊断至关重要。在计算机网络中可能存在循环或循环,但是文献中很少考虑这种情况下的故障推理方法。本文提供了一种基于循环时间约束网络(CTCN)的分析模型,旨在利用时间信息对循环计算机网络进行故障诊断。所提出的框架的目标是双重的:给定网络结构和预定的候选故障原因,制定与被测计算机网络相对应的CTCN模型。基于CTCN模型,给定带有时间戳的警报序列,将执行故障诊断过程,以其发生的时间间隔确定最可能的故障原因。推理方法取决于时间点和时间距离信息,通过这些信息可以识别出故障动机(即行为者)和故障响应者(即受害者)。计算过程包括三个步骤:1)建立目标函数; 2)确定故障传播路径; 3)用给定的故障假设确定预期状态。最后,通过应用研究证明了该方法的有效性,并验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号