首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Non-Negative Matrix Factorization With Dual Constraints for Image Clustering
【24h】

Non-Negative Matrix Factorization With Dual Constraints for Image Clustering

机译:具有用于图像聚类的双约束的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

How to learn dimension-reduced representations of image data for clustering has been attracting much attention. Motivated by that the clustering accuracy is affected by both the prior-known label information of some of the images and the sparsity feature of the representations, we propose a non-negative matrix factorization (NMF) method with dual constraints in this paper. In our model, one constraint is used to keep the label feature and the other constraint is utilized to enhance the sparsity of the representations. Notably that these two constraints are embedded naturally into the traditional NMF model, refraining from the usage of the balance parameters which are hard to choose. Meantime, for solving the proposed model, the alternative iteration scheme is employed, and an efficient algorithm based on convex optimization is designed to conduct each iteration operation. It is proved that this algorithm achieves a nonlinear convergence rate, much faster than existing methods with linear rate. Simulation results demonstrate the advantages of the proposed method.
机译:如何学习减少群集的图像数据的尺寸减少表示一直引起了很多关注。通过聚类精度受到一些图像的现有标签信息和表示的稀疏特征的影响,我们提出了本文具有双约束的非负矩阵分子(NMF)方法。在我们的模型中,使用一个约束用于保持标签特征,并且其他约束用于增强表示的稀疏性。值得注意的是,这两个约束自然地嵌入到传统的NMF模型中,避免了难以选择的平衡参数的使用。同时,为了解决所提出的模型,采用替代迭代方案,并且设计了一种基于凸优化的有效算法来进行每个迭代操作。事实证明,该算法实现了非线性收敛速率,比具有线性速率的现有方法快得多。仿真结果表明了该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号