首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Iterative Identification of Hammerstein Parameter Varying Systems With Parameter Uncertainties Based on the Variational Bayesian Approach
【24h】

Iterative Identification of Hammerstein Parameter Varying Systems With Parameter Uncertainties Based on the Variational Bayesian Approach

机译:基于变分贝叶斯方法的参数不确定Hammerstein参数变系统的迭代辨识

获取原文
获取原文并翻译 | 示例

摘要

The identification of the multiple model-based Hammerstein parameter varying systems is studied in this paper. The parameters of the considered systems vary as the systems perform on different operating conditions. For each local model, the input nonlinear output-error structure is introduced to describe the dynamical property. Allocating an exponential weighting function to each local model, the nonlinear dynamics of the global system is approximated by combining all local models. The variational Bayesian (VB) approach is adopted to find the solution to the problem of parameter estimation. For the parameter uncertainties, instead of the point estimation, the posterior distribution of each model parameters is obtained under the framework of the VB approach. Two numerical simulation examples and an experiment carried on a multitank system have been employed to demonstrate that the proposed approach can work effectively.
机译:本文研究了基于多个模型的Hammerstein参数变化系统的辨识。所考虑系统的参数随系统在不同操作条件下的运行而变化。对于每个局部模型,引入输入非线性输出误差结构来描述动力学特性。通过为每个局部模型分配指数加权函数,可以通过组合所有局部模型来近似全局系统的非线性动力学。采用变分贝叶斯(VB)方法来找到参数估计问题的解决方案。对于参数不确定性,在VB方法的框架下获得每个模型参数的后验分布,而不是点估计。通过两个数值模拟实例和在多容器系统上进行的实验来证明该方法可以有效地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号