首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Event-Triggered Communication and Data Rate Constraint for Distributed Optimization of Multiagent Systems
【24h】

Event-Triggered Communication and Data Rate Constraint for Distributed Optimization of Multiagent Systems

机译:事件触发的通信和数据速率约束,用于多主体系统的分布式优化

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with solving a large category of convex optimization problems using a group of agents, each only being accessible to its individual convex cost function. The optimization problems are modeled as minimizing the sum of all the agents' cost functions. The communication process between agents is described by a sequence of time-varying yet balanced directed graphs which are assumed to be uniformly strongly connected. Taking into account the fact that the communication channel bandwidth is limited, for each agent we introduce a vector-valued quantizer with finite quantization levels to preprocess the information to be exchanged. We exploit an event-triggered broadcasting technique to guide information exchange, further reducing the communication cost of the network. By jointly designing the dynamic event-triggered encoding-decoding schemes and the event-triggered sampling rules (to analytically determine the sampling time instant sequence for each agent), a distributed subgradient descent algorithm with constrained information exchange is proposed. By selecting the appropriate quantization levels, all the agents' states asymptotically converge to a consensus value which is also the optimal solution to the optimization problem, without committing saturation of all the quantizers. We find that one bit of information exchange across each connected channel can guarantee that the optimiztion problem can be exactly solved. Theoretical analysis shows that the event-triggered subgradient descent algorithm with constrained data rate of networks converges at the rate of O(lnt√t). We supply a numerical simulation experiment to demonstrate the effectiveness of the proposed algorithm and to validate the correctness of theoretical results.
机译:本文涉及使用一组代理解决一大类凸优化问题,每个代理只能访问其单独的凸成本函数。优化问题被建模为使所有代理的成本函数之和最小。代理之间的通信过程由一系列时变但平衡的有向图描述,假定这些图有统一的牢固联系。考虑到通信信道带宽有限的事实,对于每个代理,我们引入具有有限量化级别的矢量值量化器来预处理要交换的信息。我们利用事件触发的广播技术来指导信息交换,从而进一步降低了网络的通信成本。通过联合设计动态事件触发的编解码方案和事件触发的采样规则(以分析方式确定每个代理的采样时间序列),提出了一种信息交换受限的分布式梯度下降算法。通过选择适当的量化级别,所有主体的状态都渐近收敛到一个共识值,这也是优化问题的最佳解决方案,而不会使所有量化器处于饱和状态。我们发现,在每个连接的通道上进行一点信息交换可以确保优化问题得以正确解决。理论分析表明,网络数据速率受限的事件触发次梯度下降算法收敛速度为O(lnt√t)。我们提供了一个数值模拟实验,以证明所提出算法的有效性并验证理论结果的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号