首页> 外文期刊>IEEE Transactions on Sustainable Computing >ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System
【24h】

ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System

机译:St-Delta:基于新的空间时间价值网络辅助网络流量控制系统

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has emerged as a popular Artificial Intelligence (AI) technique to make conventional cyber physical systems become intelligent and sustainable. Recently, deep learning has been widely used in the network domain. With the aid of powerful deep neural networks, the communication network can carry out packets forwarding actions intelligently to avoid possible failure and congestion. However, with the high computing cost and process limitation in only the static network scenario, the existing deep learning based network traffic control algorithms cannot satisfy the sustainable requirement of next generation large scale dynamic network. To conquer the existing problems, a novel spatial-temporal value network aided deep learning based intelligent traffic control algorithm referred as ST-DeLTA is proposed in this paper. In ST-DeLTA, the value matrix and spatial temporal training model (ST model) are employed to intelligently extract the spatial as well as temporal features of traffic patterns and make adaptive packets forwarding decision in large scale and dynamic networks. The mathematical analysis gives the computing cost reduction of our proposal, and the computer simulation demonstrates that our proposal has significantly better training and network performance compared with traditional algorithms in terms of training accuracy, transmission throughput, and average packets loss rate.
机译:深入学习已成为一种流行的人工智能(AI)技术,使传统的网络物理系统成为智能和可持续的。最近,深度学习已广泛用于网络领域。借助强大的深度神经网络,通信网络可以智能地执行数据包转发动作,以避免可能的失败和拥塞。然而,利用静态网络场景的高计算成本和过程限制,现有的基于深度学习的网络流量控制算法不能满足下一代大规模动态网络的可持续要求。为了征服现有问题,本文提出了一种新颖的空间 - 时间价值网络辅助基于深度学习的基于深度学习的智能流量控制算法。在ST-DELTA中,使用值矩阵和空间时间训练模型(ST模型)来智能地提取流量模式的空间和时间特征,并在大规模和动态网络中进行自适应分组转发决策。数学分析给出了我们提案的计算成本降低,计算机模拟表明,与训练精度,传输吞吐量和平均数据包丢失率方面的传统算法相比,我们的提案具有明显更好的培训和网络性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号