首页> 外文期刊>IEEE Transactions on Sustainable Computing >Enabling Collaborative Computing Sustainably Through Computational Latency-Based Pricing
【24h】

Enabling Collaborative Computing Sustainably Through Computational Latency-Based Pricing

机译:通过基于计算延迟的定价,可持续启用协作计算

获取原文
获取原文并翻译 | 示例

摘要

Utilizing the idle computing resources from the distributed Internet of Things devices can sustainably increase the computational capacity and thereby effectively alleviate the pressure on resource-constrained devices, which is referred to as collaborative computing. However, extra computing consumption potentially impacts the local computation tasks of collaborative computing devices. Hence, it is essential to design an efficient incentive mechanism for computational resources sharing. Specifically, we consider the collaborative computing system where a user offloads the computation-intensive and latency-sensitive tasks to multiple idle computing devices (ICDs) by a centralized computing sharing platform (CSP). We first propose a computational latency-based pricing mechanism from the perspective of the quality-of-experience performance; then, a game-theoretic computing task allocation approach is developed among the CSP and multiple ICDs to maximize all participants’ profit. The CSP first determines the optimal task partition dynamically upon the tasks’ arrival; then, the ICDs derive the optimal central processing unit-cycle frequency correspondingly. Simulation results demonstrate that the overall computational latency of our proposed mechanism is significantly decreased, and achieves by at least 13.5 percent improvement compared with the existing schemes. Meanwhile, the profit of all participants is maximum in collaborative computing, which is improved by 41.5 and 27.9 percent for the CSP and the ICDs, respectively.
机译:利用来自分布式的物联网的空闲计算资源设备可以可持续地提高计算能力,从而有效地减轻资源受限设备的压力,该设备被称为协作计算。然而,额外的计算消耗可能影响协作计算设备的本地计算任务。因此,为计算资源共享设计有效的激励机制是必要的。具体地,我们考虑通过集中计算共享平台(CSP)将计算密集和延迟敏感任务卸载到多个空闲计算设备(ICD)的协同计算系统。我们首先从经验质量性能的角度提出基于计算延迟的定价机制;然后,在CSP和多个ICD中开发了一种游戏理论计算任务分配方法,以最大限度地提高所有参与者的利润。 CSP首先在任务到达时动态地确定最佳任务分区;然后,ICDS相应地导出最佳中央处理单元循环频率。仿真结果表明,我们提出机制的整体计算潜伏期明显下降,与现有计划相比,达到了至少13.5%的改进。同时,所有参与者的利润在协作计算中最多是最大的,其分别为CSP和ICDS提高了41.5%和27.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号