首页> 外文期刊>IEEE Transactions on Sustainable Computing >A Dynamic Programming Framework for DVFS-Based Energy-Efficiency in Multicore Systems
【24h】

A Dynamic Programming Framework for DVFS-Based Energy-Efficiency in Multicore Systems

机译:用于多核系统中基于DVFS的能效的动态规划框架

获取原文
获取原文并翻译 | 示例

摘要

Per-core Dynamic Voltage and Frequency (V/F) Scaling (DVFS) is a well-known methodology for achieving energy efficiency in multicore systems. Heuristic DVFS techniques provide fast, suboptimal V/F predictions while Dynamic Programming (DP) methods solve smaller sub-problems iteratively and use their outcomes to evaluate V/F levels globally, but at the cost of overhead delays. We propose an efficient DP framework using the Viterbi algorithm, which uses the Energy-Delay Product (EDP) as an objective function to predict the best V/F levels using applications’ profiled information, to minimize energy consumption and execution time. Experimental results show that our framework outperforms heuristics using the EDP criteria and provides near-optimal solutions when maximizing energy saving is as, or more, important than minimizing execution time penalty. In fact, across several benchmarks, our proposed algorithm provides from a 12 to 75 percent improvement in EDP compared to heuristic methods. Furthermore, using a Pareto frontier to evaluate solutions of the algorithms under study, we demonstrate that our framework's energy-time solution is on average only 9 percent worse than the optimal solution. In addition, we show that our dynamic programming solution is 3 to 18 percent closer to a theoretical lower-bound when compared to the studied heuristic methods.
机译:每个核心动态电压和频率(V / F)缩放(DVFS)是一种用于实现多核系统中能效的公知方法。启发式DVFS技术提供快速,次优V / F预测,而动态编程(DP)方法迭代地解决了较小的子问题,并使用其结果在全球范围内评估V / F级别,但是以开销延迟的成本计算。我们使用Viterbi算法提出了一种高效的DP框架,该算法使用能量延迟产品(EDP)作为目标函数来使用应用程序的“异构信息”来预测最佳的V / F级别,以最大限度地减少能量消耗和执行时间。实验结果表明,我们的框架使用EDP标准优先于启发式的启发式,并在最大限度地提高节能时提供近乎最佳解决方案,而不是最小化执行时间损失。事实上,在几个基准中,我们所提出的算法提供了与启发式方法相比EDP的12至75%。此外,使用帕累托前沿评估研究的算法的解决方案,我们证明我们的框架的节能解决方案平均仅比最佳解决方案更差。此外,我们表明,与所学习的启发式方法相比,我们的动态编程解决方案较近理论较低的3至18%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号