首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >A comparative study of robust linear predictive analysis methods with applications to speaker identification
【24h】

A comparative study of robust linear predictive analysis methods with applications to speaker identification

机译:鲁棒线性预测分析方法在说话人识别中的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Various linear predictive (LP) analysis methods are studied and compared from the points of view of robustness to noise and of application to speaker identification. The key to the success of the LP techniques is in separating the vocal tract information from the pitch information present in a speech signal even under noisy conditions. In addition to considering the conventional, one-shot weighted least-squares methods, the authors propose three other approaches with the above point as a motivation. The first is an iterative approach that leads to the weighted least absolute value solution. The second is an extension of the one-shot least-squares approach and achieves an iterative update of the weights. The update is a function of the residual and is based on minimizing a Mahalanobis distance. Third, the weighted total least-squares formulation is considered. A study of the deviations in the LP parameters is done when noise (white Gaussian and impulsive) is added to the speech. It is revealed that the most robust method depends on the type of noise. Closed-set speaker identification experiments with 20 speakers are conducted using a vector quantizer classifier trained on clean speech. The relative performance of the various LP approaches depends on the type of speech material used for testing.
机译:研究了各种线性预测(LP)分析方法,并从鲁棒性到噪声以及将其应用于说话人识别的角度进行了比较。 LP技术成功的关键在于即使在嘈杂的条件下,也能将声道信息与语音信号中存在的音调信息分离。除了考虑传统的单次加权最小二乘方法外,作者还提出了其他三种方法,并以此为动机。第一种是迭代方法,可得出加权的最小绝对值解。第二个是单次最小二乘法的扩展,并实现了权重的迭代更新。更新是残差的函数,并且基于最小化Mahalanobis距离。第三,考虑加权总最小二乘公式。当噪声(白高斯和冲动)添加到语音时,便完成了LP参数偏差的研究。结果表明,最可靠的方法取决于噪声的类型。使用在纯净语音上训练的矢量量化器分类器,对20位说话者进行闭口说话人识别实验。各种LP方法的相对性能取决于用于测试的语音材料的类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号