首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Content-based audio classification and retrieval using the nearest feature line method
【24h】

Content-based audio classification and retrieval using the nearest feature line method

机译:使用最近的特征线方法进行基于内容的音频分类和检索

获取原文
获取原文并翻译 | 示例

摘要

A method is presented for content-based audio classification and retrieval. It is based on a new pattern classification method called the nearest feature line (NFL). In the NFL, information provided by multiple prototypes per class is explored. This contrasts to the nearest neighbor (NN) classification in which the query is compared to each prototype individually. Regarding audio representation, perceptual and cepstral features and their combinations are considered. Extensive experiments are performed to compare various classification methods and feature sets. The results show that the NFL-based method produces consistently better results than the NN-based and other methods. A system resulting from this work has achieved the error rate of 9.78%, as compared to that of 18.34% of a compelling existing system, as tested on a common audio database.
机译:提出了一种用于基于内容的音频分类和检索的方法。它基于一种称为最近特征线(NFL)的新模式分类方法。在NFL中,探索了每个类由多个原型提供的信息。这与最近的邻居(NN)分类形成对比,在该分类中,将查询与每个原型分别进行比较。关于音频表示,考虑感知和倒谱特征及其组合。进行了广泛的实验以比较各种分类方法和特征集。结果表明,基于NFL的方法始终比基于NN的方法和其他方法产生更好的结果。在通用音频数据库上测试的结果表明,通过这项工作得出的系统的错误率达到9.78%,而令人信服的现有系统的错误率则为18.34%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号