首页> 外文期刊>IEEE Transactions on Neural Networks >Content-based audio classification and retrieval by support vector machines
【24h】

Content-based audio classification and retrieval by support vector machines

机译:支持向量机基于内容的音频分类和检索

获取原文

摘要

Support vector machines (SVMs) have been recently proposed as a new learning algorithm for pattern recognition. In this paper, the SVMs with a binary tree recognition strategy are used to tackle the audio classification problem. We illustrate the potential of SVMs on a common audio database, which consists of 409 sounds of 16 classes. We compare the SVMs based classification with other popular approaches. For audio retrieval, we propose a new metric, called distance-from-boundary (DFB). When a query audio is given, the system first finds a boundary inside which the query pattern is located. Then, all the audio patterns in the database are sorted by their distances to this boundary. All boundaries are learned by the SVMs and stored together with the audio database. Experimental comparisons for audio retrieval are presented to show the superiority of this novel metric to other similarity measures.
机译:支持向量机(SVM)最近已被提出作为一种新的模式识别学习算法。在本文中,具有二叉树识别策略的支持向量机用于解决音频分类问题。我们在一个通用音频数据库上说明了SVM的潜力,该数据库由16类的409种声音组成。我们将基于SVM的分类与其他流行方法进行了比较。对于音频检索,我们提出了一种新的度量标准,称为距离边界距离(DFB)。当给出查询音频时,系统首先找到查询模式位于其中的边界。然后,将数据库中的所有音频模式按它们到该边界的距离排序。所有边界都由SVM学习,并与音频数据库一起存储。提出了用于音频检索的实验比较,以表明该新颖指标优于其他相似性指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号