首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >A modular RNN-based method for continuous Mandarin speechrecognition
【24h】

A modular RNN-based method for continuous Mandarin speechrecognition

机译:基于模块化RNN的连续普通话语音识别方法

获取原文
获取原文并翻译 | 示例

摘要

A new modular recurrent neural network (MRNN)-based method for continuous Mandarin speech recognition (CMSR) is proposed. The MRNN recognizer is composed of four main modules. The first is a sub-MRNN module whose function is to generate discriminant functions for all 412 base-syllables. It accomplishes the task by using four recurrent neural network (RNN) submodules. The second is an RNN module which is designed to detect syllable boundaries for providing timing cues in order to help solve the time-alignment problem. The third is also an RNN module whose function is to generate discriminant functions for 143 intersyllable diphone-like units to compensate the intersyllable coarticulation effect. The fourth is a dynamic programming (DP)-based recognition search module. Its function is to integrate the other three modules and solve the time-alignment problem for generating the recognized base-syllable sequence. A new multilevel pruning scheme designed to speed up the recognition process is also proposed. The whole MRNN can be trained by a sophisticated three-stage minimum classification error/generalized probabilistic descent (MCE/GPD) algorithm. Experimental results showed that the proposed method performed better than the maximum likelihood (ML)-trained hidden Markov model (HMM) method and is comparable to the MCE/GPD-trained HMM method. The multilevel pruning scheme was also found to be very efficient
机译:提出了一种基于模块化递归神经网络的连续汉语语音识别(CMSR)方法。 MRNN识别器由四个主要模块组成。第一个是子MRNN子模块,其功能是为所有412个基音节生成判别函数。它通过使用四个递归神经网络(RNN)子模块来完成任务。第二个是RNN模块,该模块旨在检测音节边界以提供定时提示,以帮助解决时间对齐问题。第三个也是RNN模块,其功能是为143个音节的双音素样单元生成判别函数,以补偿音节间的共音效果。第四个是基于动态编程(DP)的识别搜索模块。它的功能是集成其他三个模块并解决时间对齐问题,以生成识别的基音节序列。还提出了一种旨在加快识别过程的新的多级修剪方案。可以通过复杂的三级最小分类误差/广义概率下降(MCE / GPD)算法来训练整个MRNN。实验结果表明,该方法的性能优于最大似然训练的隐马尔可夫模型(HMM),并且与MCE / GPD训练的HMM方法具有可比性。还发现多级修剪方案非常有效

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号