首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >Text-independent speaker verification using utterance level scoring and covariance modeling
【24h】

Text-independent speaker verification using utterance level scoring and covariance modeling

机译:使用发声水平评分和协方差建模的独立于文本的说话人验证

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called utterance level scoring (ULS), allows one to obtain a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a distortion measure. Subsequently, a distortion measure between the utterance covariance and the sample covariance of data taken from different speakers is used to normalize the score. Experimental results from the 2000 NIST speaker recognition evaluation are presented for ULS, used with different distortion measures, and for a Gaussian mixture model (GMM) system. The results indicate that ULS as a viable alternative to GMM whenever the computational complexity and verification accuracy needs to be traded.
机译:本文介绍了一种计算简单的方法,可以使用二阶统计量执行与文本无关的说话人验证。所建议的方法被称为话语水平评分(ULS),它允许人们通过单次通过被测试话语的帧来获得标准化分数。首先计算发声样本协方差,然后使用失真度量将其与说话者协方差进行比较。随后,在发声协方差和从不同说话者获取的数据的样本协方差之间的失真度量用于标准化得分。提供了2000年NIST说话人识别评估的实验结果,这些结果适用于ULS(用于不同的失真度量)和高斯混合模型(GMM)系统。结果表明,无论何时需要交换计算复杂性和验证准确性,ULS都是GMM的可行替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号