首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Natural language spoken interface control using data-driven semantic inference
【24h】

Natural language spoken interface control using data-driven semantic inference

机译:使用数据驱动的语义推理的自然语言口语界面控制

获取原文
获取原文并翻译 | 示例

摘要

Spoken interaction tasks are typically approached using a formal grammar as language model. While ensuring good system performance, this imposes a rigid framework on users, by implicitly forcing them to conform to a pre-defined interaction structure. This paper introduces the concept of data-driven semantic inference, which in principle allows for any word constructs in command/query formulation. Each unconstrained word string is automatically mapped onto the intended action through a semantic classification against the set of supported actions. As a result, it is no longer necessary for users to memorize the exact syntax of every command. The underlying (latent semantic analysis) framework relies on co-occurrences between words and commands, as observed in a training corpus. A suitable extension can also handle commands that are ambiguous at the word level. The behavior of semantic inference is characterized using a desktop user interface control task involving 113 different actions. Under realistic usage conditions, this approach exhibits a 2 to 5% classification error rate. Various training scenarios of increasing scope are considered to assess the influence of coverage on performance. Sufficient semantic knowledge about the task domain is found to be captured at a level of coverage as low as 70%. This illustrates the good generalization properties of semantic inference.
机译:语音交互任务通常使用形式语法作为语言模型来处理。在确保良好的系统性能的同时,通过隐式强制用户遵循预定义的交互结构,从而为用户强加了刚性框架。本文介绍了数据驱动语义推理的概念,该概念原则上允许在命令/查询公式中使用任何单词构造。通过针对支持的操作集的语义分类,每个不受约束的单词字符串都会自动映射到预期的操作上。结果,用户不再需要记住每个命令的确切语法。底层(潜在语义分析)框架依赖于训练语料库中观察到的单词和命令之间的共现。合适的扩展名还可以处理单词级别上含糊不清的命令。使用涉及113个不同动作的桌面用户界面控制任务来表征语义推断的行为。在实际使用条件下,此方法的分类错误率为2%至5%。考虑扩大范围的各种培训方案以评估覆盖范围对绩效的影响。发现有关任务域的足够语义知识以低至70%的覆盖率被捕获。这说明了语义推断的良好概括性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号