首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Discriminative auditory-based features for robust speech recognition
【24h】

Discriminative auditory-based features for robust speech recognition

机译:基于辨别听觉的功能可实现强大的语音识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, a new auditory-based feature extraction algorithm for robust speech recognition in noisy environments was proposed. The new features are derived by mimicking closely the human peripheral auditory process and the filters in the outer ear, middle ear, and inner ear are obtained from psychoacoustics literature with some manual adjustments. In this paper, we extend the auditory-based feature extraction algorithm and propose to further train the auditory-based filters through discriminative training. Using the data-driven approach, we optimize the filters by minimizing the subsequent recognition errors on a task. One significant contribution over similar efforts in the past (generally under the name of "discriminative feature extraction") is that we make no assumption on the parametric form of the auditory-based filters. Instead, we only require the filters to be triangular-like: the filter weights have a maximum value in the middle and then monotonically decrease to both ends. Discriminative training of these constrained auditory-based filters leads to improved performance. Furthermore, we study the combined discriminative training procedure for both feature and acoustic model parameters. Our experiments show that the best performance can be obtained in a sequential procedure under the unified framework of MCE/GPD.
机译:最近,提出了一种新的基于听觉的特征提取算法,用于嘈杂环境中的鲁棒语音识别。这些新功能是通过紧密模仿人类周围的听觉过程而得出的,外耳,中耳和内耳的过滤器是从心理声学文献中获得的,并进行了一些手动调整。在本文中,我们扩展了基于听觉的特征提取算法,并提出通过判别训练进一步训练基于听觉的过滤器。使用数据驱动的方法,我们通过最小化任务上的后续识别错误来优化过滤器。过去(通常以“区分特征提取”的名称)做出的类似努力的一项重要贡献是,我们没有对基于听觉的过滤器的参数形式做出任何假设。取而代之的是,我们仅要求过滤器为三角形:过滤器权重在中间具有最大值,然后在两端均单调减小。这些受约束的基于听觉的过滤器的辨别训练可提高性能。此外,我们研究了针对特征和声学模型参数的组合判别训练程序。我们的实验表明,在MCE / GPD统一框架下,按顺序执行程序可以获得最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号