首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >Audio Classification and Categorization Based on Wavelets and Support Vector Machine
【24h】

Audio Classification and Categorization Based on Wavelets and Support Vector Machine

机译:基于小波和支持向量机的音频分类与分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an improved audio classification and categorization technique is presented. This technique makes use of wavelets and support vector machines (SVMs) to accurately classify and categorize audio data. When a query audio is given, wavelets are first applied to extract acoustical features such as subband power and pitch information. Then, the proposed method uses a bottom-up SVM over these acoustical features and additional parameters, such as frequency cepstral coefficients, to accomplish audio classification and categorization. A public audio database (Muscle Fish), which consists of 410 sounds in 16 classes, is used to evaluate the performances of the proposed method against other similar schemes. Experimental results show that the classification errors are reduced from 16 (8.1%) to six (3.0%), and the categorization accuracy of a given audio sound can achieve 100% in the Top 2 matches.
机译:本文提出了一种改进的音频分类和分类技术。该技术利用小波和支持向量机(SVM)来对音频数据进行准确的分类。当给出查询音频时,首先应用小波来提取声学特征,例如子带功率和音调信息。然后,所提出的方法对这些声学特征和附加参数(例如倒频谱系数)使用自底向上的SVM来完成音频分类和分类。一个公共音频数据库(Muscle Fish)由16个类的410种声音组成,用于评估该方法相对于其他类似方案的性能。实验结果表明,分类误差从16(8.1%)减少到6(3.0%),并且在前2个匹配项中,给定音频声音的分类精度可以达到100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号