首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >The use of virtual hypothesis copies in decoding of large-vocabulary continuous speech
【24h】

The use of virtual hypothesis copies in decoding of large-vocabulary continuous speech

机译:虚拟假设副本在大词汇量连续语音解码中的使用

获取原文
获取原文并翻译 | 示例

摘要

High computational effort hinders wide-spread deployment of large-vocabulary continuous-speech recognition (LVCSR), for example in home or mobile devices. To this end, we developed a novel approach to LVCSR Viterbi decoding with significantly reduced effort. By a novel search-space organization called virtual hypothesis copies, we eliminate search-space copies that are approximately redundant: 1) Word-lattice generation and (M+1)-gram lattice rescoring are integrated into a single-pass time-synchronous beam search. Hypothesis copying becomes independent from the language-model order. 2) The word-pair approximation is replaced by the novel phone-history approximation (PHA). Tree copies are shared among multiple linguistic histories that end in the same phone(s). 3) Copies of individual tree arcs are shared by recombining within-word hypotheses at phone boundaries according to the PHA. At no loss of accuracy, we achieve a search-space reduction of 60-80% for Mandarin LVCSR, and of 40-50% for English (NAB 64 K). The method is exact under certain model assumptions. A formal specification is derived. In addition, we propose an extremely effective syllable lookahead for Mandarin. Together with the methods above, search space was reduced 12-15 times and state likelihood evaluations 4-9 times without significant error increase.
机译:大量的计算工作阻碍了大型语音连续语音识别(LVCSR)的广泛部署,例如在家用或移动设备中。为此,我们开发了一种新颖的LVCSR维特比解码方法,其工作量大大减少。通过一个称为虚拟假设副本的新颖搜索空间组织,我们消除了近似冗余的搜索空间副本:1)词格生成和(M + 1)-gram格记录与单通时间同步波束集成在一起搜索。假设复制变得独立于语言模型顺序。 2)单词对近似被新颖的电话历史近似(PHA)取代。树状副本在同一电话中结束的多种语言历史之间共享。 3)根据PHA,通过在电话边界处重新组合单词内假设来共享单个树弧的副本。不失准确性,普通话LVCSR的搜索空间减少了60-80%,英语(NAB 64 K)减少了40-50%。在某些模型假设下,该方法是精确的。得出正式的规范。此外,我们建议对普通话进行非常有效的音节预读。与上述方法一起,搜索空间减少了12-15倍,状态似然评估减少了4-9倍,而不会显着增加错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号