首页> 外文期刊>IEEE Transactions on Signal Processing >Two-Band Wavelets and Filterbanks Over Finite Fields with Connections to Error Control Coding
【24h】

Two-Band Wavelets and Filterbanks Over Finite Fields with Connections to Error Control Coding

机译:有限域上的双频带小波和滤波器组,与误差控制编码有关

获取原文
获取原文并翻译 | 示例

摘要

Recently, we have developed a new framework to study error-control coding using finite-field wavelets and filterbanks (FBs). This framework reveals a rich set of signal processing techniques that can be exploited to investigate new error correcting codes and to simplify encoding and decoding techniques for some existing ones. This paper introduces the theory of wavelet decompositions of signals in vector spaces defined over Galois fields. To avoid the limitations of the number theoretic Fourier transform, our wavelet transform relies on a basis decomposition in the time rather than the frequency domain. First, by employing a symmetric, nondegenerate canonical bilinear form, we obtain a necessary and sufficient condition that the basis functions defined over finite fields must satisfy in order to construct an orthogonal wavelet transform. Then, we present a design methodology to generate the mother wavelet and scaling function over finite fields by relating the wavelet transform to two-channel paraunitary (PU) FBs. Finally, we describe the application of this transform to the construction of error correcting codes. In particular, we give examples of double circulant codes that are generated by wavelets.
机译:最近,我们开发了一个新的框架来研究使用有限域小波和滤波器组(FB)的错误控制编码。该框架揭示了一组丰富的信号处理技术,可用于研究新的纠错码并简化某些现有编码和解码技术。本文介绍了在Galois场上定义的向量空间中信号的小波分解理论。为了避免数论傅立叶变换的局限性,我们的小波变换依赖于时域而不是频域的基础分解。首先,通过采用对称的,不退化的规范双线性形式,我们获得了在有限域上定义的基函数必须满足以构造正交小波变换的必要和充分条件。然后,我们提出一种设计方法,通过将小波变换与两通道超para元(PU)FB关联,在有限域上生成母小波和缩放函数。最后,我们描述了此变换在纠错码构造中的应用。特别是,我们给出了由小波生成的双循环码的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号