首页> 外文期刊>IEEE Transactions on Signal Processing >Separation of an Instantaneous Mixture of Gaussian Autoregressive Sources by the Exact Maximum Likelihood Approach
【24h】

Separation of an Instantaneous Mixture of Gaussian Autoregressive Sources by the Exact Maximum Likelihood Approach

机译:精确最大似然法分离高斯自回归源的瞬时混合

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of blind separation of an instantaneous mixture of Gaussian autoregressive sources, without additive noise, by the exact maximum likelihood approach. The maximization of the likelihood function is divided, using relaxation, into two suboptimization problems, solved by relaxation methods as well. The first one consists of the estimation of the separating matrix when the autoregressive structure of the sources is fixed. The second one aims at estimating this structure when the separating matrix is fixed. We show that the first problem is equivalent to the determinant maximization of the separating matrix under nonlinear constraints. We prove the existence and the consistency of the maximum likelihood estimator. We also give the expression of Fisher's information matrix. Then, we study, by computer simulations, the performance of our estimator and show the improvement of its achievements w.r.t. both quasimaximum likelihood and second-order blind identification (SOBI) estimators.
机译:本文通过精确的最大似然方法,解决了高斯自回归源的瞬时混合物无附加噪声的盲分离问题。使用松弛将似然函数的最大值分为两个次优化问题,这些问题也可以通过松弛方法解决。第一个是当源的自回归结构固定时估计分离矩阵。第二个目标是在固定分离矩阵时估算此结构。我们表明,第一个问题等同于非线性约束下分离矩阵的行列式最大化。我们证明了最大似然估计的存在性和一致性。我们还给出了Fisher信息矩阵的表达式。然后,我们通过计算机模拟研究估算器的性能,并通过w.r.t.展示其性能的提高。准最大似然和二阶盲识别(SOBI)估计量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号