首页> 外文期刊>IEEE Transactions on Signal Processing >Signal Detection for MIMO-ISI Channels: An Iterative Greedy Improvement Approach
【24h】

Signal Detection for MIMO-ISI Channels: An Iterative Greedy Improvement Approach

机译:MIMO-ISI信道的信号检测:迭代贪婪改进方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the signal detection for multiple input-multiple output intersymbol interference (MIMO-ISI) channels with diverse assumptions on the channel knowledge: perfect, blind, trained, etc. This general problem is cast into a unifying Bayesian statistics framework. With this formulation, the optimal detector is the one maximizing the posterior signal density [marginal maximum a posteriori (MAP)], Since the marginal MAP is hard to deal with, a joint MAP formulation is proposed as a reasonable substitute that maximizes the posterior joint signal and channel density. It is also shown that for independent and identically distributed (i.i.d.) signals, the two formulations will lead to very close results. The joint MAP formulation leads to an iterative projection algorithm that alternates between the optimization over channel parameters and signaling matrices. The bottleneck of iterative projections is on the finite-alphabet constrained quadratic minimization. We show that the notion of error decomposition can be bridged with greedy optimizations to construct iterative greedy search algorithms and examine their performance. A particularization, called full greedy search, is shown to be able to reach the global optimum (maximum likelihood solutions) starting with any initialization. Since potential constraints in computational complexity may prohibit the application of this version of greedy search, we explore the performance (loss) for greedy search implementations with complexity constraints, arriving at deterministic performance bounds and a bit-error rate (BER) upper bound. The effect of model imprecision is also theoretically characterized. Based on the theoretical development, an iterative local optimization with interference cancellation (LOIC) algorithm is proposed to achieve low complexity and exploit the finite alphabet constraint. Motivated by the Sylvester structure, it approximates the full greedy search by focusing on local error sequences. It can also be regarded as a flexible interference cancellation strategy with noncausal information and iterative computations. An empirical comparison of detectors with perfect channel knowledge demonstrated that the proposed LOIC algorithms can offer very attractive BER/complexity tradeoffs.
机译:在本文中,我们考虑针对多个输入多输出符号间干扰(MIMO-ISI)信道的信号检测,其中对信道知识的假设多种多样:完善,盲目,受过训练等。这个通用问题被转化为统一的贝叶斯统计框架。通过这种公式,最佳的检测器是使后方信号密度[边缘最大后验(MAP)]最大化的检测器。由于边际MAP难以处理,因此提出了联合MAP公式作为使后方关节最大化的合理替代方案。信号和通道密度。还显示出,对于独立且均匀分布的(i.i.d.)信号,这两种表述将导致非常接近的结果。联合MAP公式导致了迭代投影算法,该算法在通道参数的优化和信令矩阵之间交替。迭代投影的瓶颈在有限字母约束的二次最小化上。我们表明,错误分解的概念可以与贪婪优化联系起来,以构造迭代贪婪搜索算法并检查其性能。显示出一种称为完全贪婪搜索的特殊化,能够从任何初始化开始达到全局最优(最大似然解)。由于计算复杂性的潜在限制可能会禁止此版本的贪婪搜索的应用,因此,我们将探索具有复杂性限制的贪婪搜索实现的性能(损失),从而获得确定的性能范围和误码率(BER)上限。从理论上讲,模型不精确性的影响也具有特征。在理论发展的基础上,提出了一种具有干扰消除的迭代局部优化算法,以实现较低的复杂度并利用有限的字母约束。受西尔维斯特(Sylvester)结构的激励,它通过关注局部错误序列来近似完整的贪婪搜索。它也可以被视为具有非因果信息和迭代计算的灵活干扰消除策略。对具有完善通道知识的检测器进行的经验比较表明,提出的LOIC算法可以提供非常有吸引力的BER /复杂度折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号