首页> 外文期刊>IEEE Transactions on Signal Processing >ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems
【24h】

ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems

机译:ForWaRD:病态系统的傅立叶小波正则反卷积

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.
机译:我们提出了一种高效的混合傅里叶小波正则化反卷积(ForWaRD)算法,该算法通过标量收缩在傅里叶和小波域中执行噪声正则化。傅立叶收缩利用了去卷积固有的彩色噪声的傅立叶变换的经济表示,而小波收缩利用了分段平滑信号和图像的小波域的经济表示。通过优化近似均方误差(MSE)度量,我们得出了傅里叶和小波正则化量之间的最佳平衡,并发现具有更经济小波表示的信号需要更少的傅里叶收缩。 ForWaRD适用于所有病态反卷积问题,与单纯基于小波的小波-Vaguelette反卷积(WVD)不同;此外,与纯粹基于傅立叶的维纳反卷积不同,其估计具有最小的振铃。即使在设计WVD的问题中,我们也证明ForWaRD的MSE随着样本数量的增加而以最佳WVD速率衰减。此外,我们证明了在广泛的实际样本长度范围内,ForWaRD可以改善WVD的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号