首页> 外文期刊>IEEE Transactions on Signal Processing >Robust Power Allocation for Resource-Aware Multi-Target Tracking With Colocated MIMO Radars
【24h】

Robust Power Allocation for Resource-Aware Multi-Target Tracking With Colocated MIMO Radars

机译:具有Colocated MIMO雷达的资源感知多目标跟踪的强大功率分配

获取原文
获取原文并翻译 | 示例

摘要

Power allocation is an essential part of the design of colocated multiple-input and multiple-output (C-MIMO) radar systems for multi-target tracking (MTT). A widely adopted power allocation approach is to directly minimize the amount of allocated power while satisfying the desired performance for each tracked object so as to conserve the power resources. However, this approach may not lead to a satisfactory solution when the available power is not sufficient to achieve the desired performance for all the targets. To overcome the limitations of this approach, a robust power allocation (RPA) methodology is proposed in this paper based on the quality of service framework. At its core, the proposed RPA employs a task utility function that quantifies the tracking performance for different power allocations in a flexible manner. The Bayesian Cramér-Rao lower bound (BCRLB) is utilized to formulate the task utility function since it provides a lower bound on the accuracy of target state estimates. By using a set of weights to quantify the importance of different tracked objects, the objective function of RPA is modeled as the weighted sum of task utility functions. This formulation of the RPA problem is demonstrated to be a non-convex optimization problem in general. We show that the task utility function is unimodal. Based on the specific structure of the task utility function, we propose an iterative parallel search algorithm to find the solution. Numerical experiments involving scenarios with both sufficient and insufficient power resources demonstrate the robustness and efficiency of the proposed strategy.
机译:功率分配是用于多目标跟踪(MTT)的Colocated多输入和多输出(C-MIMO)雷达系统设计的重要组成部分。广泛采用的功率分配方法是直接最小化分配功率的量,同时满足每个跟踪物体的所需性能,以便节省电力资源。然而,当可用功率不足以实现所有目标的所需性能时,这种方法可能不会导致令人满意的解决方案。为了克服这种方法的局限性,基于服务框架的质量,本文提出了一种强大的功率分配(RPA)方法。在其核心,所提出的RPA采用任务实用程序功能,以灵活的方式为不同的功率分配量化跟踪性能。由于它在目标状态估计的准确性提供了下限,因此利用贝叶斯Cramér-Rao下绑定(BCRLB)下限(BCRLB)。通过使用一组权重来量化不同跟踪对象的重要性,RPA的目标函数被建模为任务实用程序功能的加权和。该RPA问题的这种制剂被证明通常是非凸优化问题。我们表明任务实用程序功能是单峰的。基于任务实用程序功能的特定结构,我们提出了一种迭代并行搜索算法来找到解决方案。涉及具有足够和不足的电力资源的情景的数值实验表明了拟议策略的稳健性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号