首页> 外文期刊>Signal Processing, IEEE Transactions on >Optimal Sensor Power Scheduling for State Estimation of Gauss–Markov Systems Over a Packet-Dropping Network
【24h】

Optimal Sensor Power Scheduling for State Estimation of Gauss–Markov Systems Over a Packet-Dropping Network

机译:通过分组丢弃网络的高斯 - 马尔可夫系统状态估计的最佳传感器电源调度

获取原文
获取原文并翻译 | 示例

摘要

We consider sensor power scheduling for estimating the state of a general high-order Gauss-Markov system. A sensor decides whether to use a high or low transmission power to communicate its local state estimate or raw measurement data with a remote estimator over a packet-dropping network. We construct the optimal sensor power schedule which minimizes the expected terminal estimation error covariance at the remote estimator under the constraint that the high transmission power can only be used m <; T + 1 times, given the time-horizon from k = 0 to k = T. We also discuss how to extend the result to cases involving multiple power levels scheduling. Simulation examples are the provided to demonstrate the results.
机译:我们考虑传感器电源调度,用于估计一般的高阶高斯 - 马尔可夫系统的状态。传感器决定是否使用高或低传输功率来通过分组丢弃网络与远程估计器将其本地估计或原始测量数据传送。我们构建最佳传感器电源计划,该时间表最小化远程估计的预期终端估计误差协方差,因为只能使用高传输功率M <; T + 1次,鉴于K = 0到k = T的时间 - 地平线,我们还讨论如何将结果扩展到涉及多个功率水平调度的情况。仿真示例是提供了展示结果的说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号