首页> 外文期刊>IEEE Transactions on Signal Processing >False Alarm Rate of the GLRT for Subspace Signals in Subspace Interference Plus Gaussian Noise
【24h】

False Alarm Rate of the GLRT for Subspace Signals in Subspace Interference Plus Gaussian Noise

机译:子空间干扰和高斯噪声中子空间信号的GLRT的虚警率

获取原文
获取原文并翻译 | 示例

摘要

In the presence of interference and Gaussian noise with unknown covariance matrix, a generalized likelihood ratio test (GLRT) detector has already been developed for detecting a distributed target. The target signal and interference are described with subspace models, namely, the target signals (or interference) are modeled as linear combinations of the linearly independent columns of a known subspace matrix. In this paper, we obtain statistical properties of this GLRT detector, and prove its constant false alarm rate against the noise covariance matrix. Moreover, we derive analytical expressions for the probability of false alarm of the GLRT detector. Specifically, exact expressions for the probability of false alarm are obtained for six cases where the target subspace dimension (denoted by p) is 1, 2, and 3, and the number of range cells (denoted by H) the distributed target occupies is 1, 2, and 3. For the general case where p >= 4 and H >= 4, we derive an approximate expression for the probability of false alarm. Monte Carlo simulations show that the exact expressions are valid, and the accuracy of the approximate expression is acceptable for moderate or large training data size. In practice, these expressions can greatly facilitate the threshold setting for the GIRT detector for any preassigned probability of false alarm.
机译:在存在未知协方差矩阵的干扰和高斯噪声的情况下,已经开发了一种通用似然比测试(GLRT)检测器,用于检测分布式目标。用子空间模型描述目标信号和干扰,即,将目标信号(或干扰)建模为已知子空间矩阵的线性独立列的线性组合。在本文中,我们获得了这种GLRT检测器的统计特性,并针对噪声协方差矩阵证明了其恒定的虚警率。此外,我们导出了GLRT检测器误报概率的解析表达式。具体而言,对于六种情况获得了错误警报概率的精确表达式,其中目标子空间维数(用p表示)是1、2和3,并且分布的目标占据的距离单元数(用H表示)是1 ,2和3。对于p> = 4且H> = 4的一般情况,我们推导出误报概率的近似表达式。蒙特卡洛模拟显示精确表达式是有效的,并且对于中等或较大的训练数据量,近似表达式的准确性是可以接受的。实际上,对于任何预先分配的错误警报概率,这些表达式可以极大地简化GIRT检测器的阈值设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号