首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive Estimation of Dynamic RSS Fields Based on Crowdsourcing and Gaussian Processes
【24h】

Recursive Estimation of Dynamic RSS Fields Based on Crowdsourcing and Gaussian Processes

机译:基于众包和高斯过程的动态RSS字段的递归估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the estimation of a time-varying spatial field of received signal strength (RSS) by relying on measurements from randomly placed and not very accurate sensors. We employ a radio propagation model where the path loss exponent and the transmitted power are unknown with Gaussian priors whose hyper-parameters are estimated by applying the empirical Bayes method. We consider the locations of the sensors to be imperfectly known, which entails that they represent another source of error in the model. The propagation model includes shadowing, which is considered to be a zero-mean Gaussian process where the correlation of attenuation between two spatial points is quantified by an exponential function of the distance between the points. The location of the transmitter is also unknown and is estimated from the data. We propose to estimate time-varying RSS fields by a recursive Bayesian method and crowdsourcing. The method is based on Gaussian processes, and it produces the joint distribution of the spatial field. Further, it summarizes all the acquired information by keeping the size of the needed memory bounded. We also present the Bayesian Cramer-Rao bound of the estimated parameters. Finally, we illustrate the performance of our method with experimental results on synthetic and real data sets.
机译:在本文中,我们通过依赖于随机放置且不是很精确的传感器的测量值来解决接收信号强度(RSS)随时间变化的空间场的估计。我们采用无线电传播模型,其中高斯先验未知路径损耗指数和发射功率,而高斯先验的超参数是通过经验贝叶斯方法估算的。我们认为传感器的位置不完全已知,这意味着它们代表了模型中的另一个误差源。传播模型包括阴影,该阴影被认为是零均值高斯过程,其中两个空间点之间的衰减相关性通过点之间的距离的指数函数来量化。发射机的位置也是未知的,并根据数据进行估算。我们建议通过递归贝叶斯方法和众包估计时变的RSS字段。该方法基于高斯过程,并且产生空间场的联合分布。此外,它通过限制所需内存的大小来汇总所有获取的信息。我们还提出了估计参数的贝叶斯Cramer-Rao界。最后,我们用合成和真实数据集上的实验结果说明了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号