首页> 外文期刊>IEEE Transactions on Signal Processing >Analysis of Distributed ADMM Algorithm for Consensus Optimization in Presence of Node Error
【24h】

Analysis of Distributed ADMM Algorithm for Consensus Optimization in Presence of Node Error

机译:存在节点错误时用于共识性优化的分布式ADMM算法分析

获取原文
获取原文并翻译 | 示例

摘要

Alternating direction method of multipliers (ADMM) is a popular convex optimization algorithm, which can be employed for solving distributed consensus optimization problems. In this setting, agents locally estimate the optimal solution of an optimization problem and exchange messages with their neighbors over a connected network. The distributed algorithms are typically exposed to different types of errors in practice, e.g., due to quantization or communication noise or loss. We here focus on analyzing the convergence of distributed ADMM for consensus optimization in the presence of additive random node error, in which case the nodes communicate a noisy version of their latest estimate of the solution to their neighbors in each iteration. We present analytical upper and lower bounds on the mean-squared steady-state error of the algorithm in case the local objective functions are strongly convex and have Lipschitz continuous gradients. In addition, we show that when the local objective functions are convex and the additive node error is bounded, the estimation error of the noisy ADMM for consensus optimization is also bounded. Numerical results are provided, which demonstrates the effectiveness of the presented analyses and shed light on the role of the system and network parameters on performance.
机译:乘数交替方向法(ADMM)是一种流行的凸优化算法,可用于解决分布式共识优化问题。在这种情况下,代理可以在本地估计优化问题的最佳解决方案,并通过连接的网络与邻居交换消息。实际上,例如由于量化或通信噪声或损失,分布式算法通常会暴露于不同类型的错误。在此,我们着重分析在存在附加随机节点错误的情况下针对共识优化而进行的分布式ADMM收敛性,在这种情况下,节点在每次迭代中均将其最新解估计值的噪声版本传达给其邻居。如果局部目标函数是强凸且具有Lipschitz连续梯度,我们将给出算法均方稳态误差的解析上限和下限。此外,我们表明,当局部目标函数是凸的且加性节点误差为有界时,用于共识优化的嘈杂ADMM的估计误差也有界。提供的数值结果证明了所提出的分析的有效性,并阐明了系统和网络参数对性能的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号