首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Distributed Optimization Under Unbalanced Digraphs With Node Errors: Robustness of Surplus-Based Dual Averaging Algorithm
【24h】

Distributed Optimization Under Unbalanced Digraphs With Node Errors: Robustness of Surplus-Based Dual Averaging Algorithm

机译:不平衡性数字下的分布式优化与节点误差:基于剩余的双平均算法的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

In this article, the robustness of distributed constrained optimization algorithms for weight-unbalanced directed multiagent networks is studied. Specifically, it is assumed that each agent is subject to additive random node errors, which are caused by the imperfect communication in networks. Under this framework, it is shown that a typical algorithm, called surplus-based dual averaging (SDA), can successfully achieve the convergence to the optimal value of the considered optimization problem, which exhibits the robustness to the node errors. Technically, in the proof of this result, an important augmentation of the node errors in the fusion and surplus variables is first introduced, and then by means of the random process theory and the attenuation effect of diminishing step size on node errors, the robustness of SDA is proved. In addition, inspired by the SDA, a robust algorithm is developed to solve the distributed online optimization problem with node errors. Finally, simulations are given to verify the theoretical results.
机译:在本文中,研究了重量 - 不平衡定向多验网络的分布式约束优化算法的稳健性。具体地,假设每个代理经过附加随机节点错误,这是由网络中的不完美通信引起的。在此框架下,示出了一种典型的算法,称为基于盈余的双平均(SDA),可以成功地实现对所考虑的优化问题的最佳价值的收敛,这表现出节点错误的鲁棒性。从技术上讲,在这种结果证明,首先引入融合和剩余变量中的节点错误的重要增强,然后通过随机处理理论和节点误差缩短步长的衰减效果,鲁棒性证明了SDA。此外,由SDA启发,开发了一种强大的算法来解决节点错误的分布式在线优化问题。最后,给出了仿真验证了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号