首页> 外文期刊>IEEE Transactions on Signal Processing >Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems
【24h】

Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

机译:MmWave MIMO系统中使用LSE和稀疏消息传递的迭代信道估计

获取原文
获取原文并翻译 | 示例

摘要

We propose an iterative channel estimation algorithm based on the least square estimation (LSE) and sparse message passing (SMP) algorithm for the millimeter wave (mmWave) MIMO systems. The channel coefficients of the mmWave MIMO are approximately modeled as a Bernoulli–Gaussian distribution and the channel matrix is sparse with only a few nonzero entries. By leveraging the advantage of sparseness, we propose an algorithm that iteratively detects the exact locations and values of nonzero entries of the sparse channel matrix. At each iteration, the locations are detected by the SMP, and values are estimated with the LSE. We also analyze the Cramér–Rao Lower Bound (CLRB), and show that the proposed algorithm is a minimum variance unbiased estimator under the assumption that we have the partial priori knowledge of the channel. Furthermore, we employ the Gaussian approximation for message densities under density evolution to simplify the analysis of the algorithm, which provides a simple method to predict the performance of the proposed algorithm. Numerical experiments show that the proposed algorithm has much better performance than the existing sparse estimators, especially when the channel is sparse. In addition, our proposed algorithm converges to the CRLB of the genie-aided estimation of sparse channels with only five turbo iterations.
机译:我们针对毫米波(mmWave)MIMO系统提出了一种基于最小二乘估计(LSE)和稀疏消息传递(SMP)算法的迭代信道估计算法。 mmWave MIMO的信道系数近似建模为Bernoulli-Gaussian分布,并且信道矩阵稀疏,只有少数非零项。通过利用稀疏的优势,我们提出了一种算法,该算法可迭代地检测稀疏通道矩阵的非零项的确切位置和值。在每次迭代中,位置由SMP检测,并由LSE估算值。我们还分析了Cramér-Rao下界(CLRB),并表明在假设我们具有部分先验信道知识的前提下,所提出的算法是最小方差无偏估计量。此外,我们采用密度演化下的消息密度的高斯近似来简化算法的分析,这为预测所提出算法的性能提供了一种简单的方法。数值实验表明,该算法比现有的稀疏估计器具有更好的性能,尤其是在信道稀疏的情况下。此外,我们提出的算法仅用5个turbo迭代即可收敛到稀疏通道的精灵辅助估计的CRLB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号