首页> 外文期刊>IEEE Transactions on Signal Processing >Line Constrained Estimation With Applications to Target Tracking: Exploiting Sparsity and Low-Rank
【24h】

Line Constrained Estimation With Applications to Target Tracking: Exploiting Sparsity and Low-Rank

机译:线约束估计及其在目标跟踪中的应用:利用稀疏性和低秩

获取原文
获取原文并翻译 | 示例

摘要

Trajectory estimation of moving targets is examined; in particular, quasi-linear trajectories are considered. Background subtraction methods, exploiting low-rank backgrounds, and sparse features of interest are extended to incorporate linear constraints. The line constraint is enforced via a rotation that yields an additional low rank condition. The proposed method is applied to single object tracking in video, wherein the trajectory can be parameterized as a line. The optimization is solved via the augmented Lagrange multiplier method. An average performance improvement of 4 dB is observed over previous background subtraction methods for estimating the position and velocity of the target. Furthermore, about a 6.2 dB gain is seen over previous target tracking methods that do not exploit the linear nature of the trajectory. The Cramér-Rao bound (CRB) for background subtraction with a linear constraint is derived and numerical results show that the proposed method achieves near optimal performance via comparison to the CRB. An aggregated error is shown to converge to zero and a boundedness analysis is conducted which suggests that the iterative algorithm is convergent as confirmed by simulations. Finally, the proposed technique is applied to real video data and is shown to be effective in estimating quasi-linear trajectories.
机译:检查运动目标的轨迹估计;特别地,考虑了准线性轨迹。背景减法,利用低等级背景和稀疏的关注特征被扩展为包含线性约束。通过产生额外的低秩条件的旋转来强制执行线约束。所提出的方法被应用于视频中的单个对象跟踪,其中轨迹可以被参数化为一条线。通过增强的拉格朗日乘数法解决了优化问题。与先前的背景减法方法相比,平均性能提高了4 dB,用于估计目标的位置和速度。此外,在不利用轨迹线性特性的先前目标跟踪方法中,可以看到约6.2 dB的增益。推导了具有线性约束的背景扣除的Cramér-Rao界(CRB),数值结果表明,与CRB相比,该方法可达到接近最佳的性能。汇总误差显示收敛到零,并进行了有界性分析,这表明迭代算法是收敛的,如仿真所证实。最后,将所提出的技术应用于真实视频数据,并被证明在估计准线性轨迹方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号