首页> 外文期刊>IEEE Transactions on Signal Processing >Exploiting Sparsity in Tight-Dimensional Spaces for Piecewise Continuous Signal Recovery
【24h】

Exploiting Sparsity in Tight-Dimensional Spaces for Piecewise Continuous Signal Recovery

机译:利用紧密空间中的稀疏性进行分段连续信号恢复

获取原文
获取原文并翻译 | 示例

摘要

Recovery of certain piecewise continuous signals from noisy observations has been a major challenge in sciences and engineering. In this paper, in a tight-dimensional representation space, we exploit sparsity hidden in a class of possibly discontinuous signals named finite-dimensional piecewise continuous (FPC) signals. More precisely, we propose a tight-dimensional linear transformation which reveals a certain sparsity in discrete samples of the FPC signals. This transformation is designed by exploiting the fact that most of the consecutive samples are contained in special subspaces. Numerical experiments on recovery of piecewise polynomial signals and piecewise sinusoidal signals show the effectiveness of the revealed sparsity.
机译:从噪声观测中恢复某些分段连续信号一直是科学和工程学的主要挑战。在本文中,我们在紧维表示空间中利用稀疏性隐藏在称为有限维分段连续(FPC)信号的一类可能不连续的信号中。更准确地说,我们提出了一个紧密尺寸的线性变换,该变换揭示了FPC信号离散样本中的某种稀疏性。通过利用大多数连续样本都包含在特殊子空间中这一事实来设计此转换。分段多项式信号和分段正弦信号恢复的数值实验表明,所揭示的稀疏性是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号