首页> 外文期刊>IEEE Transactions on Signal Processing >Discreteness-Aware Approximate Message Passing for Discrete-Valued Vector Reconstruction
【24h】

Discreteness-Aware Approximate Message Passing for Discrete-Valued Vector Reconstruction

机译:离散值向量重构的离散感知近似消息传递

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the reconstruction of a discrete-valued random vector from possibly underdetermined linear measurements using sum-of-absolute-value (SOAV) optimization. The proposed algorithm, referred to as discreteness-aware approximate message passing (DAMP), is based on the idea of approximate message passing (AMP), which has been originally proposed for compressed sensing. The DAMP algorithm has low computational complexity and its performance in the large system limit can be predicted analytically via state evolution framework, where we provide a condition for the exact reconstruction with DAMP in the noise-free case. From the analysis, we also propose a method to determine the parameters of the SOAV optimization. Moreover, based on the state evolution, we provide Bayes optimal DAMP, which has the minimum mean-square-error at each iteration of the algorithm. Simulation results show that the DAMP algorithms can reconstruct the discrete-valued vector from underdetermined linear measurements and the empirical performance agrees with our theoretical results in large-scale systems. When the problem size is not large enough, the SOAV optimization with the proposed parameters can achieve better performance than the DAMP algorithms for high signal-to-noise ratio.
机译:本文考虑使用绝对值和(SOAV)优化从可能不确定的线性测量中重构离散值随机向量。所提出的算法,称为离散感知的近似消息传递(DAMP),基于近似消息传递(AMP)的思想,该思想最初是为压缩传感而提出的。 DAMP算法具有较低的计算复杂度,并且可以通过状态演化框架来分析地预测其在较大系统范围内的性能,这为在无噪声情况下使用DAMP进行精确重构提供了条件。通过分析,我们还提出了一种确定SOAV优化参数的方法。此外,基于状态演化,我们提供了贝叶斯最优DAMP,它在算法的每次迭代中均具有最小的均方误差。仿真结果表明,DAMP算法可以从不确定的线性测量中重建离散值矢量,其经验性能与我们在大规模系统中的理论结果吻合。当问题大小不够大时,对于高信噪比,使用提出的参数进行的SOAV优化可以比DAMP算法获得更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号