首页> 外文期刊>IEEE Transactions on Signal Processing >Detecting small, moving objects in image sequences using sequential hypothesis testing
【24h】

Detecting small, moving objects in image sequences using sequential hypothesis testing

机译:使用顺序假设检验检测图像序列中小的移动物体

获取原文
获取原文并翻译 | 示例

摘要

An algorithm is proposed for the solution of the class of multidimensional detection problems concerning the detection of small, barely discernible, moving objects of unknown position and velocity in a sequence of digital images. A large number of candidate trajectories, organized into a tree structure, are hypothesized at each pixel in the sequence and tested sequentially for a shift in mean intensity. The practicality of the algorithm is facilitated by the use of multistage hypothesis testing (MHT) for simultaneous inference, as well as the existence of exact, closed-form expressions for MHT test performance in Gaussian white noise (GWN). These expressions predict the algorithm's computation and memory requirements, where it is shown theoretically that several orders of magnitude of processing are saved over a brute-force approach based on fixed sample-size tests. The algorithm is applied to real data by using a robust preprocessing procedure to eliminate background structure and transform the image sequence into a residual representation, modeled as GWN. Results are verified experimentally on a variety of video image sequences.
机译:提出了一种用于解决多维检测问题的算法,该算法涉及检测数字图像序列中位置和速度未知的小的,几乎看不到的运动物体。在序列中的每个像素处都假设了组织成树状结构的大量候选轨迹,并依次测试了平均强度的变化。通过使用多阶段假设测试(MHT)进行同时推理,以及在高斯白噪声(GWN)中存在用于MHT测试性能的精确,封闭形式的表达式,可以促进算法的实用性。这些表达式预测了算法的计算和内存需求,理论上表明,基于固定样本大小的测试,通过蛮力方法可以节省几个数量级的处理。通过使用鲁棒的预处理程序将算法应用于实际数据,以消除背景结构并将图像序列转换为残差表示形式,建模为GWN。实验结果在各种视频图像序列上得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号