首页> 外文期刊>IEEE Transactions on Signal Processing >Application of the Gibbs distribution to hidden Markov modeling in speaker independent isolated word recognition
【24h】

Application of the Gibbs distribution to hidden Markov modeling in speaker independent isolated word recognition

机译:Gibbs分布在说话人独立孤立词识别中的隐马尔可夫建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

A method of integrating the Gibbs distributions (GDs) into hidden Markov models (HMMs) is presented. The probabilities of the hidden state sequences of HMMs are modeled by GDs in place of the transition probabilities. The GDs offer a general way in modeling neighbor interactions of Markov random fields where the Markov chains in HMMs are special cases. An algorithm for estimating the model parameters is developed based on Baum reestimation, and an algorithm for computing the probability terms is developed using a lattice structure. The GD models were used for experiments in speech recognition on the TI speaker-independent, isolated digit database. The observation sequences of the speech signals were modeled by mixture Gaussian autoregressive densities. The energy functions of the GDs were developed using very few parameters and proved adequate in hidden layer modeling. The results of the experiments showed that the GD models performed at least as well as the HMM models.
机译:提出了一种将吉布斯分布(GDs)集成到隐马尔可夫模型(HMM)中的方法。 HMM的隐藏状态序列的概率由GD代替过渡概率建模。 GD提供了一种建模Markov随机字段的邻居交互的通用方法,其中HMM中的Markov链是特例。基于Baum重新估计,开发了用于估计模型参数的算法,并使用格结构开发了用于计算概率项的算法。 GD模型用于在与TI说话者无关的独立数字数据库上进行语音识别实验。语音信号的观测序列通过混合高斯自回归密度建模。 GD的能量函数是使用很少的参数开发的,并且在隐层建模中证明是足够的。实验结果表明,GD模型至少与HMM模型一样好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号