首页> 外文期刊>IEEE Transactions on Signal Processing >Sensor array processing based on subspace fitting
【24h】

Sensor array processing based on subspace fitting

机译:基于子空间拟合的传感器阵列处理

获取原文
获取原文并翻译 | 示例

摘要

Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting-based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals.
机译:结合子空间拟合问题考虑了用于从传感器阵列的测量输出中估计未知信号参数的算法。所考虑的方法是确定性最大似然方法(ML),ESPRIT和最近提出的多维信号子空间方法。这些方法是在基于子空间拟合的框架中制定的,该框架可深入了解它们的代数和渐近关系。结果表明,通过引入特定的加权矩阵,多维信号子空间方法可以获得与ML方法相同的渐近性质。对于一般的子空间加权,得出估计误差的渐近分布,并确定提供最小方差估计的加权。产生的最佳技术称为加权子空间拟合(WSF)方法。数值示例表明,WSF估计值的渐近方差与Cramer-Rao边界一致。与其他技术相比,性能改进对于高度相关的信号最为突出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号