首页> 外文期刊>IEEE Transactions on Signal Processing >Regularized fast recursive least squares algorithms for adaptive filtering
【24h】

Regularized fast recursive least squares algorithms for adaptive filtering

机译:用于自适应滤波的正则化快速递归最小二乘算法

获取原文
获取原文并翻译 | 示例

摘要

Fast recursive least squares (FRLS) algorithms are developed by using factorization techniques which represent an alternative way to the geometrical projections approach or the matrix-partitioning-based derivations. The estimation problem is formulated within a regularization approach, and priors are used to achieve a regularized solution which presents better numerical stability properties than the conventional least squares one. The numerical complexity of the presented algorithms is explicitly related to the displacement rank of the a priori covariance matrix of the solution. It then varies between O(5m) and that of the slow RLS algorithms to update the Kalman gain vector, m being the order of the solution. An important advantage of the algorithms is that they admit a unified formulation such that the same equations may equally treat the prewindowed and the covariance cases independently from the used priors. The difference lies only in the involved numerical complexity, which is modified through a change of the dimensions of the intervening variables. Simulation results are given to illustrate the performances of these algorithms.
机译:快速递归最小二乘(FRLS)算法是通过使用分解技术开发的,该技术代表了几何投影方法或基于矩阵划分的推导的另一种方法。估计问题是在一种正则化方法中提出的,并且先验用于获得一种正则化的解决方案,该解决方案具有比常规最小二乘法更好的数值稳定性。所提出算法的数值复杂度与解决方案的先验协方差矩阵的位移等级明确相关。然后,它在O(5m)和慢速RLS算法的O(5m)之间变化,以更新Kalman增益矢量,m是解的阶数。该算法的一个重要优点是,它们接受统一的表述,以使相同的方程式可以等同于独立于使用的先验条件对待预窗口和协方差情况。区别仅在于所涉及的数值复杂性,这可以通过更改中间变量的尺寸来进行修改。仿真结果说明了这些算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号