首页> 外文期刊>IEEE Transactions on Signal Processing >Strongly consistent identification algorithms and noise insensitive MSE criteria
【24h】

Strongly consistent identification algorithms and noise insensitive MSE criteria

机译:高度一致的识别算法和对噪声不敏感的MSE标准

获取原文
获取原文并翻译 | 示例

摘要

Windowed cumulant projections of nonGaussian linear processes yield autocorrelation estimators which are immune to additive Gaussian noise of unknown covariance. By establishing strong consistency of these estimators, strongly consistent and noise insensitive recursive algorithms are developed for parameter estimation. These computationally attractive schemes are shown to be optimal with respect to a modified mean-square-error (MSE) criterion which implicitly exploits the high signal-to-noise ratio domain of cumulant statistics. The novel MSE objective function is expressed in terms of the noisy process, but it is shown to be a scalar multiple of the standard MSE criterion as if the latter was computed in the absence of noise. Simulations illustrate the performance of the proposed algorithms and compare them with the conventional algorithms.
机译:非高斯线性过程的加窗累积量投影产生自相关估计量,该估计量不受协方差未知的加性高斯噪声的影响。通过建立这些估计器的强一致性,开发了用于参数估计的强一致性和对噪声不敏感的递归算法。相对于修改后的均方误差(MSE)准则而言,这些在计算上有吸引力的方案被证明是最佳的,该准则隐式地利用了累积量统计的高信噪比域。新的MSE目标函数是用噪声过程表示的,但是它显示为标准MSE标准的标量倍数,就像后者是在没有噪声的情况下计算的一样。仿真说明了所提出算法的性能,并将其与常规算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号