首页> 外文期刊>IEEE Transactions on Signal Processing >Performance analysis of a split-path LMS adaptive filter for AR modeling
【24h】

Performance analysis of a split-path LMS adaptive filter for AR modeling

机译:用于AR建模的分裂路径LMS自适应滤波器的性能分析

获取原文
获取原文并翻译 | 示例

摘要

A split-path adaptive filter is proposed for extracting the model parameters of an autoregressive process. The structure is composed of two linear phase filters connected in parallel, one antisymmetric and the other symmetric. The two filters are adapted independently on a sample-by-sample basis using the least-mean-square (LMS) algorithm. The performance of the system in terms of convergence speed and excess mean square error is analyzed in detail, and comparisons with the conventional transversal structure are made. Theoretical analysis and experimental results show that the model can provide a much faster rate of convergence at the expense of only a moderate increase in computation. Two methods for choosing control parameters for the split-path adaptive filter are also suggested to improve further the convergence behavior.
机译:提出了一种分离路径自适应滤波器,用于提取自回归过程的模型参数。该结构由两个并联连接的线性相位滤波器组成,一个反对称,另一个对称。使用最小均方(LMS)算法,在逐个样本的基础上独立调整两个滤波器。详细分析了系统在收敛速度和均方误差方面的性能,并与传统的横向结构进行了比较。理论分析和实验结果表明,该模型可以以仅适度增加计算为代价提供更快的收敛速度。还提出了两种选择分裂路径自适应滤波器的控制参数的方法,以进一步改善收敛性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号