首页> 外文期刊>IEEE Transactions on Signal Processing >Modular and numerically stable fast transversal filters for multichannel and multiexperiment RLS
【24h】

Modular and numerically stable fast transversal filters for multichannel and multiexperiment RLS

机译:用于多通道和多实验RLS的模块化且数值稳定的快速横向滤波器

获取原文
获取原文并翻译 | 示例

摘要

The authors present scalar implementations of multichannel and multiexperiment fast recursive least squares algorithms in transversal filter form, known as fast transversal filter (FTF) algorithms. By processing the different channels and/or experiments one at a time, the multichannel and/or multiexperiment algorithm decomposes into a set of intertwined single-channel single-experiment algorithms. For multichannel algorithms, the general case of possibly different filter orders in different channels is handled. Geometrically, this modular decomposition approach corresponds to a Gram-Schmidt orthogonalization of multiple error vectors. Algebraically, this technique corresponds to matrix triangularization of error covariance matrices and converts matrix operations into a regular set of scalar operations. Modular algorithm structures that are amenable to VLSI implementation on arrays of parallel processors naturally follow from the present approach. Numerically, the resulting algorithm benefits from the advantages of triangularization techniques in block processing.
机译:作者介绍了采用横向滤波器形式的多通道和多实验快速递归最小二乘算法的标量实现,称为快速横向滤波器(FTF)算法。通过一次处理不同的通道和/或实验,多通道和/或多实验算法分解为一组相互交织的单通道单实验算法。对于多通道算法,处理在不同通道中可能具有不同滤波器阶数的一般情况。在几何上,这种模块化分解方法对应于多个误差向量的Gram-Schmidt正交化。代数上,此技术对应于误差协方差矩阵的矩阵三角化,并将矩阵运算转换为规则的标量运算集。适用于并行处理器阵列上的VLSI实现的模块化算法结构自然遵循本方法。从数值上讲,所得算法得益于块处理中三角化技术的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号