首页> 外文期刊>IEEE Transactions on Signal Processing >Maximum-likelihood localization of narrow-band autoregressive sources via the EM algorithm
【24h】

Maximum-likelihood localization of narrow-band autoregressive sources via the EM algorithm

机译:EM算法对窄带自回归源的最大似然定位

获取原文
获取原文并翻译 | 示例

摘要

The authors derive an expectation-maximization algorithm for the maximum-likelihood estimation of the directions of arrival of multiple narrowband autoregressive (AR) signals embedded in noise. The proposed algorithm simultaneously estimates the location parameters, the AR coefficients, and the signals. The additional structural information that the sources are of the AR type enables one to resolve the case in which the number of sources is equal to or possibly larger than the number of sensors. The authors provide examples demonstrating that the proposed algorithm can resolve two spectrally and spatially closely spaced sources by using a two-sensor array.
机译:作者推导出了期望最大化算法,用于对嵌入噪声中的多个窄带自回归(AR)信号的到达方向进行最大似然估计。所提出的算法同时估计位置参数,AR系数和信号。源是AR类型的附加结构信息使得人们能够解决源的数量等于或可能大于传感器的数量的情况。作者提供了一些示例,说明所提出的算法可以通过使用双传感器阵列来解析两个光谱和空间上紧密间隔的源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号