首页> 外文期刊>IEEE Transactions on Signal Processing >A Bayesian approach to auto-calibration for parametric array signal processing
【24h】

A Bayesian approach to auto-calibration for parametric array signal processing

机译:用于参数阵列信号处理的贝叶斯自动校准方法

获取原文
获取原文并翻译 | 示例

摘要

A number of techniques for parametric (high-resolution) array signal processing have been proposed in the last few decades. With few exceptions, these algorithms require an exact characterization of the array, including knowledge of the sensor positions, sensor gain/phase response, mutual coupling, and receiver equipment effects. Unless all sensors are identical, this information must typically be obtained by experimental measurements (calibration). In practice, of course, all such information is inevitably subject to errors. Several different methods have been proposed for alleviating the inherent sensitivity of parametric methods to such modelling errors. The technique proposed in the present paper is related to the class of so-called auto-calibration procedures, but it is assumed that certain prior knowledge of the array response errors is available. This is a reasonable assumption in most applications, and it allows for more general perturbation models than does pure auto-calibration. The optimal maximum a posteriori (MAP) estimator for the problem at hand is formulated, and a computationally more attractive large-sample approximation is derived. The proposed technique is shown to be statistically efficient, and the achievable performance is illustrated by numerical evaluation and computer simulation.
机译:在过去的几十年中,已经提出了许多用于参数(高分辨率)阵列信号处理的技术。除少数例外,这些算法需要对阵列进行精确的表征,包括对传感器位置,传感器增益/相位响应,互耦以及接收器设备影响的了解。除非所有传感器都相同,否则通常必须通过实验测量(校准)获得此信息。当然,实际上,所有此类信息都不可避免地会出错。已经提出了几种不同的方法来减轻参数方法对这种建模误差的固有敏感性。本文中提出的技术与所谓的自动校准程序的类别有关,但是假设可以获得阵列响应误差的某些先验知识。在大多数应用中,这是一个合理的假设,并且与纯自动校准相比,它允许使用更通用的摄动模型。制定了针对当前问题的最佳最大后验(MAP)估计量,并得出了计算上更具吸引力的大样本近似值。所提出的技术显示出统计上的效率,并且通过数值评估和计算机仿真说明了可实现的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号