首页> 外文期刊>IEEE Transactions on Signal Processing >Spectral decomposition of time-frequency distribution kernels
【24h】

Spectral decomposition of time-frequency distribution kernels

机译:时频分布内核的频谱分解

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the general problem of approximating a given time-frequency distribution (TFD) in terms of other distributions with desired properties. It relates the approximation of two time-frequency distributions to their corresponding kernel approximation. It is shown that the singular-value decomposition (SVD) of the time-frequency (t-f) kernels allows the expression of the time-frequency distributions in terms of weighted sum of smoothed pseudo Wigner-Ville distributions or modified periodograms, which are the two basic nonparametric power distributions for stationary and nonstationary signals, respectively. The windows appearing in the decomposition take zero and/or negative values and, therefore, are different than the time and lag windows commonly employed by these two distributions. The centrosymmetry and the time-support properties of the kernels along with the fast decay of the singular values lead to computational savings and allow for an efficient reduced rank kernel approximations.
机译:本文针对具有所需特性的其他分布来解决给定时频分布(TFD)的一般问题。它将两个时频分布的近似值与其对应的核近似值相关联。结果表明,时频(tf)核的奇异值分解(SVD)允许以平滑伪Wigner-Ville分布或修正周期图的加权和表示时频分布,这是两者基本静态和非静态信号的非参数功率分布。分解中出现的窗口取零和/或负值,因此不同于这两个分布通常使用的时间和滞后窗口。核的中心对称性和时间支持特性以及奇异值的快速衰减导致计算量的节省,并允许有效地降低秩的核近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号