首页> 外文期刊>IEEE Transactions on Signal Processing >A new approach for computing multidimensional DFT's on parallel machines and its implementation on the iPSC/860 hypercube
【24h】

A new approach for computing multidimensional DFT's on parallel machines and its implementation on the iPSC/860 hypercube

机译:一种在并行计算机上计算多维DFT的新方法及其在iPSC / 860超立方体上的实现

获取原文
获取原文并翻译 | 示例

摘要

Proposes a new approach for computing multidimensional DFTs that reduces interprocessor communications and is therefore suitable for efficient implementation on a variety of multiprocessor platforms including MIMD supercomputers and clusters of workstations. Group theoretic concepts are used to formulate a flexible computational strategy that hybrids the reduced transform algorithm (RTA) with the Good-Thomas factorization and can deal efficiently with non-power-of-two sizes without resorting to zero-padding. The RTA algorithm is employed not as a data processing but rather as a bookkeeping tool in order to decompose the problem into many smaller size subproblems (lines) that can be solved independently by the processors. Implementation issues on an Intel iPSC/i860 hypercube are discussed and timing results for large 2D and 3D DFTs with index sets in Z/MP/spl times/Z/KP and Z/N/spl times/Z/MP/spl times/Z/KP respectively are provided, where N, M, K are powers-of-two and P is a small prime number such as 3, 5, or 7. The nonoptimized realizations of the new hybrid RTA approach are shown to outperform by as much as 70% the optimized assembly coded realizations of the traditional row-column method on the iPSC/860.
机译:提出了一种用于计算多维DFT的新方法,该方法可减少处理器之间的通信,因此适合在各种多处理器平台(包括MIMD超级计算机和工作站集群)上高效实现。群组理论概念用于制定一种灵活的计算策略,该策略将简化的变换算法(RTA)与Good-Thomas因子分解混合在一起,可以有效地处理非2的幂次方,而无需使用零填充。 RTA算法不是用作数据处理,而是用作簿记工具,以便将问题分解为许多较小尺寸的子问题(行),这些子问题可由处理器独立解决。讨论了在Intel iPSC / i860超多维数据集上的实现问题,并针对大型2D和3D DFT的定时结果,其中索引集的Z / MP / spl times / Z / KP和Z / N / spl times / Z / MP / spl times / Z分别提供了/ KP,其中N,M,K为2的幂,P为较小的质数,例如3、5或7。新混合RTA方法的未优化实现被证明表现出色iPSC / 860上传统行列方法的优化汇编编码实现占70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号