首页> 外文期刊>IEEE Transactions on Signal Processing >Non-Gaussian clutter modeling with generalized spherically invariant random vectors
【24h】

Non-Gaussian clutter modeling with generalized spherically invariant random vectors

机译:具有广义球不变随机向量的非高斯杂波建模

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the modeling of non-Gaussian clutter with a set of generalized spherically invariant random vectors (SIRV's). The generalization extends the traditional model to account for dependence between successive SIRV realizations. Significant properties of generalized SIRV's are derived, as well as a closed-form expression for a family of generalized SIRV density functions. The density underlying recorded sonar reverberation is approximated with this function through appropriate choice of a shape parameter. Given this reverberation model, the optimum detector is derived from the generalized SIRV density likelihood ratio. This paper concludes by showing how applying this optimum detector to non-Gaussian data leads to a reduction in the false alarm rate when compared to processing with a matched filter alone.
机译:本文描述了使用一组广义球不变随机矢量(SIRV)对非高斯杂波进行建模的方法。泛化扩展了传统模型,以解决连续SIRV实现之间的依赖性。导出了广义SIRV的重要属性,以及一个广义SIRV密度函数族的闭式表达式。通过适当选择形状参数,可以使用此功能估算记录的声纳混响的基础密度。给定该混响模型,从广义的SIRV密度似然比得出最佳检测器。本文的结论是,与仅使用匹配滤波器进行处理相比,将这种最佳检测器应用于非高斯数据将如何减少误报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号